New Product

SS22S, SS23S & SS24S

Vishay General Semiconductor

Surface Mount Schottky Barrier Rectifier

DO-214AC (SMA)

FEATURES

- Low profile package
- Ideal for automated placement
- Low forward voltage drop, low power losses
- High efficiency
- High surge capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Solder dip 260 °C, 40 s
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in low voltage, high frequency inverters, freewheeling, dc-to-dc converters, and polarity protection applications.

(Note: These devices are not Q101 qualified.)

MECHANICAL DATA

Case: DO-214AC (SMA)

Epoxy meets UL 94V-0 flammability rating

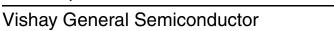
Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD22-B102

E3 suffix for consumer grade, meets JESD 201 class 1A whisker test

Polarity: Color band denotes the cathode end

MAXIMUM RATINGS ($T_A = 25 \text{ °C}$ unless otherwise noted)						
PARAMETER	SYMBOL	SS22S	SS23S	SS24S	UNIT	
Device marking code		22S	23S	24S	V	
Maximum repetitive peak reverse voltage	V _{RRM}	20 30 40		40	V	
Maximum average forward rectified current (Fig. 1)	I _{F(AV)}	2.0			Α	
Peak forward surge current 10 ms single half sine-wave superimposed on rated load	I _{FSM}	40			A	
Voltage rate of change (rated V _R)	dV/dt	10 000			V/µs	
Operating junction and storage temperature range	T _J , T _{STG}	- 55 to + 150			°C	

PRIMARY CHARACTERISTICS $I_{F(AV)}$ 2 A V_{RRM} 20 V, 30 V, 40 V I_{FSM} 40 A V_F at I_F = 2.0 A 0.517 V T_J max. 150 °C



RoHS

COMPLIANT

SS22S, SS23S & SS24S

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)							
PARAMETER	TEST CONDITIONS		SYMBOL	ТҮР	MAX.	UNIT	
Instantaneous forward voltage (1)	I _F = 1 A, I _F = 2 A,	T _J = 25 °C	V _F	0.436 0.517	- 0.55	v	
Reverse current ⁽²⁾	rated V _R	T _J = 25 °C T _J = 100 °C	I _R	13 1.65	200 8	μA mA	
Typical junction capacitance	4.0 V, 1 MHz		CJ	130	-	pF	

Notes:

(1) Pulse test: 300 µs pulse width, 1 % duty cycle

(2) Pulse test: Pulse width \leq 40 ms

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)							
PARAMETER	SYMBOL	SS22S	SS23S	SS24S	UNIT		
Typical thermal resistance ⁽¹⁾	$R_{ extsf{ heta}JA}$ $R_{ extsf{ heta}JL}$	75 25		°C/W			

Note:

(1) P.C.B. mounted with 0.4 x 0.4" (10 x 10 mm) copper pad areas

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
SS24S-E3/61T	0.064	61T	1800	7" diameter plastic tape and reel		
SS24S-E3/5AT	0.064	5AT	7500	13" diameter plastic tape and reel		

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

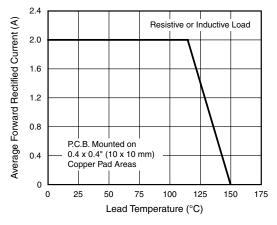


Figure 1. Forward Current Derating Curve

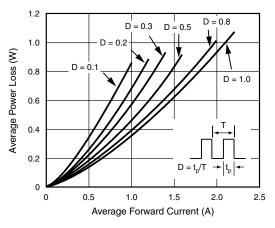


Figure 2. Forward Power Loss Characteristics

100 000

10 000

1000

100

10

10 20

Instantaneous Reverse Current (µA)

SS22S, SS23S & SS24S

Vishay General Semiconductor

T_J = 125 °C

80

90 100

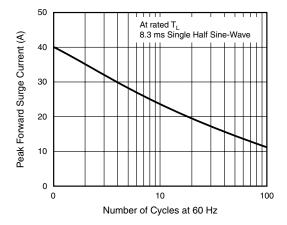


Figure 3. Maximum Non-Repetitive Peak Forward Surge Current

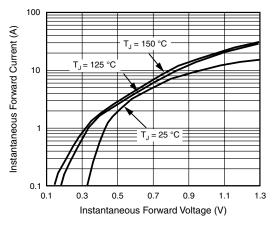
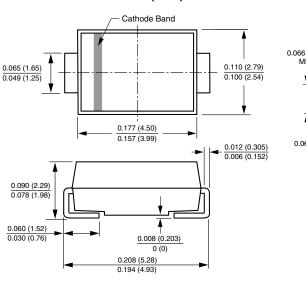
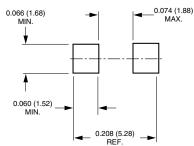




Figure 4. Typical Instantaneous Forward Characteristics

Mounting Pad Layout

Document Number: 89008 Revision: 19-May-08

For technical questions within your region, please contact one of the following: PDD-Americas@vishay.com, PDD-Asia@vishay.com, PDD-Europe@vishay.com

Percent of Rated Peak Reverse Voltage (%) Figure 5. Typical Reverse Leakage Characteristics

50 60 70

30 40 T_{.1} = 25 °C

T_J = 150

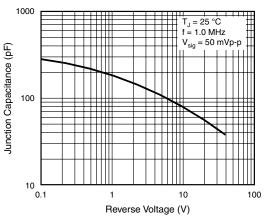


Figure 6. Typical Junction Capacitance

DO-214AC (SMA)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.